

Statistics – Your Friend, Not Your Foe

Presented by:

Paulo Macedo, PhD, Senior Statistician

Sewit Araia, MPH, Sr. Program Manager and Statistician

March 01, 2017

This document is privileged and proprietary. Redistribution is not authorized without permission of IntegrityM.

INTEGRITY MANAGEMENT SERVICES

- Introduction \bullet
- **Statistics Friend or Foe?** \bullet
- The Role of Data Analytics Today •
- **Major Types of Analytics** \bullet
- **Understanding Your Data** \bullet
- **Outlier Detection Techniques/Statistical Tools** \bullet
 - **Descriptive Statistics** ullet
 - Ranking and Percentile \bullet
 - Z score
 - Box-Plot ullet
 - Cluster Analysis ullet
 - Predictive Modeling ullet
- **Sampling and Extrapolation** \bullet

This document is privileged and proprietary. Redistribution is not authorized without permission of IntegrityM.

Integrity Management Services

Statistics – Friend or Foe?

"In God we trust, all others bring data."

- Attributed to William Edwards Deming, Statistician (1900-1993)

"We are drowning in information and starving for knowledge."

- Rutherford D. Rogers, Librarian

Statistics – Friend or Foe?

As a first impression it looks like Statistics is a <u>Foe:</u>

- Complex subject made worse by obscure terminology. \bullet
- Statistics is associated with steep learning curves. lacksquare

But it actually can be a **Friend**:

- Many statistical concepts have intuitive meanings, for example: \bullet
 - The average (mean) is a number that summarizes the data in a single value.
 - Other statistical summary numbers can be used to interpret large amounts of data helping to focus decision-making processes

The Role of Data Analytics Today

The Role of Data Analytics Today

Data Analytics methods are commonly associated with: lacksquare

- Statistics •
- Machine Learning ullet
- Data Mining ullet

The methods used in the three areas are very similar — fundamentally they are the same ulletThey use the same material and almost exactly the same techniques ullet

However, they have slightly different perspective due to their distinct historical ulletdevelopment

- Statistics
 - optimal estimators)
 - The emphasis is also on testing models and assumptions.
- Machine Learning •

 - The emphasis is on making accurate predictions • In particular, on building software systems that make predictions
- **Data Mining** lacksquare
 - The emphasis is on valuable insights (patterns) in large databases

• The emphasis is on formal statistical inference (confidence intervals, hypothesis tests,

INTEGRITY

The Role of Data Analytics Today

- "Drowning in information"
 - There is an increase in data collection in both private and government sectors •
- amount of data:
 - Electronic health records \bullet
 - Payer claims lacksquare
 - Pharmacy data
 - Laboratory test results ullet
 - Patient registries ullet
 - **Quality Measures Data** \bullet
- ulletresources

In the Healthcare Industry this is characterized by a movement towards collecting large

These developments require the use of effective analytical tools to provide oversight of health insurance transactions for compliance checking and fraud detection making smart use of limited audit

The Role of Data Analytics Today

- Data is collected and validated hopefully not garbage Then what is next? \bullet
- Turn piles of data into actionable insights using the proper analytical tools \bullet
 - Non compliant providers can be detected ullet
 - Intervention programs can be developed
 - Edits can be implemented
 - Policies can be updated

"Big Data is not about the data. Data is easily obtainable and cheap, and more so every day. The analytics that turn piles of numbers into actionable insights is difficult, and more sophisticated every day."

— Gary King

Cost saving to the program Mitigating program issues Continuous monitoring More effective regulations

INTEGRITY MANAGEMENT SERVICES

Machine Learning

- Network, graphs
 - Weights
 - Learning
- Supervised learning
- Unsupervised learning
 - Generalization

Statistics

Model

Parameters

Fitting

Regression/classification

Clustering, density estimation

Test set performance

Unsupervised Learning Methods (Non-Structured Analysis)

- No prior information required
- Outlier detection lacksquare
 - Classifying data in two subsets,
 - Outlier and within-the-norm providers

Some methods used in fraud detection

- **Time Series Analysis** ullet
 - Trend analysis
 - Spike analysis
- **Cluster Analysis** \bullet
 - Based on key similarities within the groups
- Link Analysis ullet
 - Identifying connections between providers

• Used to identify sub-specialties among providers according to their billing pattern

Supervised Learning Methods (Structured Analysis)

- Require prior information at least on a number of outcomes ullet
 - A frequent outcome is "Yes" or "No", for example, providers could be "Excluded" or "Non-excluded (Active)"
 - providers

Some methods used in fraud detection:

- Logistic regression
- Decision trees ullet
- Neural network

• The goal is to find the probability that Non-excluded providers will be excluded from the healthcare network based on their billing pattern similarity with the excluded

- Supervised Learning
- Predict credit worthiness of credit card holders:
 - Build a machine learning model to look for delinquency attributes by providing it with data on delinquent and non-delinquent customers
- Unsupervised Learning
- Segments customers by behavioral characteristics:
 - Survey prospects and customers to develop multiple segments using clustering

- Supervised Learning
- Predict patient readmission rates:
 - Build a regression model by providing data on the patients' treatment regime and readmissions to show variables that best correlate with readmissions
- Unsupervised Learning
- Categorize MRI data by normal or abnormal results:
 - Use cluster analysis to group the results into two within the norm and out of the norm

Integrity Management Services

Understanding Your Data

Understanding Data

More time is spent on understanding the data than conducting the statistical analysis

- Conduct descriptive analysis ullet
- \bullet
- ullet

Data understanding is our Friend

generated

Your analysis is only as good as your data.

Conduct research on external sources, regulatory analysis/policy analysis related to issues Understand the potential outcome — but remember the data may surprise you

This is intuitive, we do this everyday - understanding the data and how the data is

Understanding Data

File (Physician and Other Supplier PUF)

- Published by Centers for Medicare & Medicaid Services ullet
- Data is available from 2013 2014 \bullet
- Data includes Procedure codes, Provider identifier, Provider demographic information, \bullet reimbursement amount per procedure code
- The data is being used to illustrate the various methods in this workshop ullet

List of Excluded Individuals and Entities (LEIE)

- Published by the Office of Inspector General of the U.S. Department of Health & Human \bullet Services (HHS)
- Includes a List of Individuals and Entities excluded from Federal funded health care lacksquareprograms
- The data is being used to illustrate predictive modeling method ullet

- **Public Data**
- Medicare Provider Utilization and Payment Data: Physician and Other Supplier Public Use

This data will be use to illustrate the various methods:

Five variables lacksquare

- Payment Per Beneficiary
- Services Per Beneficiary
- Average Birth Year of Beneficiaries
- Percentage of Benes with Diabetes
- Average Health Risk Score of Beneficiaries
- **100 de-identified Providers** \bullet
 - Specialty 01, General Practice
 - Data source: CMS Public use file (PUF)

Raw Data

_	А	В	C	D	E	F
		Payment	Services per	Inv. Age of	% of Benes	Inv Healt
	Provider ID	Per Bene	Bene	Benes	with Diabetes	Score of
	ID_646096	\$190.27	2	1934	41.00%	0.51
	ID_117056	\$182.96	4	1939	29.00%	0.90
	ID_282206	\$198.67	5	1942	21.00%	1.04
	ID_101716	\$528.02	13	1939	25.00%	1.15
	ID_803756	\$176.48	2	1947	54.00%	0.34
	ID_683709	\$306.88	5	1936	39.00%	0.63
	ID_435156	\$210.55	3	1941	48.00%	0.53
	ID_895138	\$224.27	5	1942	36.00%	0.90
	ID_761090	\$206.43	3	1944	35.00%	0.25
	ID_669911	\$70.75	2	1942	38.00%	0.95
	ID_365846	\$232.02	3	1937	45.00%	0.45
	ID_273953	\$238.43	5	1940	20.00%	1.15
	ID_916080	\$128.84	5	1942	23.00%	1.12
	ID_849495	\$127.72	1	1944	52.00%	0.
	ID_306931	\$286.01	8	1941	75.00%	0.75
	ID_319060	\$72.78	2	1940	36.00%	0.66
_	ID_656054	\$100.70	2	1941	47.00%	0.6
	ID_674144	\$174.06	2	1942	46.00%	0.44
	ID_186871	\$323.51	4	1942	41.00%	0.57
	ID_900197	\$372.45	5	1937	42.00%	0.37
	ID_243834	\$171.60	2	1940	48.00%	0.4
_	ID_129149	\$282.90	7	1942	42.00%	0.67

Outlier Detection Techniques/Statistical Tools Descriptive Statistics

Descriptive statistics summarizes the data and it is essential to better understand the data

Outlier Detection Techniques/Statistical Tools Descriptive Statistics

Mean

- The average of the values on a given measurement/indicator
- The mean is subject to the pull of influential points/outliers ۲
- 3,5,5,8, Mean= 7 \bullet
- 3,5,5,43, Mean=14

Median

- If odd set of numbers then the median is the one middle number •
- If even set of numbers then the median is the mean of the two middle numbers •
- The median is resilient to influential points/outlier as long as the middle values remain the same ۲
- **3,5,5,8, Median= (5+5)/2 = 5** (Even numbers) ullet
- **3,5,5,43, Median= (5+5)/2 = 5** (Even numbers) \bullet

Mode

- The value that appears most often in a set of data •
- Hint: Mode ="Most" \bullet
- 3,5,5,8, Mode = 5 ; 3,5,5,43, Mode = 5 •
- 1,2,3,4, No Mode

Range

- The Range is the difference between the lowest and highest values
- 3,5,5,8, Range = 8 3=5 ; 3,5,5,43, Range = 43 3= 40
- Illustrates the spread of the data

22

Descriptive Statistics

Standard Deviation

- A measure of the dispersion or variation in a distribution, lack of dispersion can result in a ulletlack of outlier.
- If the data is close together, the standard deviation is small. If the data is spread out, the \bullet standard deviation is large.

Outlier Detection Techniques/Statistical Tools Descriptive Statistics – Excel Tool

FILE HOME INSERT	PAGE LAYOU	T FORMULAS	S DATA RI	EVIEW VIEW PC	OWERPIVOT																				
From From From From Oth Access Web Text Sources	her Existing	Refresh All - Connect	onnections operties dit Links	Sort & Filter	ear apply Ivanced Columns Fill	Remove Data Duplicates Validati	Consolidate	What-If Relation Analysis *	ships Grou	Ip Ungroup Su	* Show Deta	il 🕒 Data il 🏤 Solv	a Analysis ver	Α	В	С	D	E	F	G	Н	Ι	J	K	L
	3	Connect		Soft & Filter		Da	la 10015			U	une	AI AI	lalysis												
															Payment	Services per	Inv. Age of	% of Benes	Inv Health Risk	Descripti	ve Statistics				
														Provider ID	Per Bene	Bene	Benes	with Diabetes	Score of Benes	Input					
														ID_646096	\$190.27	2	1934	41.00%	0.514986095	Input F	Range:		\$A\$1:\$F\$1()1	1
А	В	С	D	E	F	G	4 I	J	К	L	М	N		ID_117056	\$182.96	4	1939	29.00%	0.907688118		-		Calumn	_	
														ID_282206	\$198.67	5	1942	21.00%	1.042318115	Group	ed By:			b	
														ID_101716	\$528.02	13	1939	25.00%	1.153668666				© <u>R</u> ows		
														ID_803756	\$176.48	2	1947	54.00%	0.343760743	I I I Lat	oels in First Row				
	Payment	Services per	Inv. Age of	% of Benes	Inv Health Risk									ID_683709	\$306.88	5	1936	39.00%	0.635525898						
Provider ID	Per Bene	Bene	Benes	with Diabetes	Score of Benes	Data Analysis					2 X	\square		ID 435156	\$210.55	3	1941	48.00%	0.531547334	Output	options				
ID_646096	\$190.27	2	1934	41.00%	0.514986095	Analysis Tools								ID 895138	\$224.27		1942	36.00%	0.908265213	0 <u>O</u> u	tput Range:				
ID_117030	\$198.67	4 5	1935	29.00%	1 042318115	Anova: Single	Factor				ОК			ID 761090	\$206.43		1944	35.00%	0.255924656	🔍 🔘 Ne	w Worksheet Pl	/:			
ID 101716	\$528.02	13	3 1939	25.00%	1.153668666	Anova: Two-F	actor With Repl	lication			Cancel			ID 669911	\$70.75		10/12	38.00%	0 954653938		w Workbook				
ID_803756	\$176.48	2	2 1947	7 54.00%	0.343760743	Correlation	actor without R	Replication		≡				ID 365846	\$722.02		1027	45.00%	0.453782275		W <u>W</u> OIKDOOK				
ID_683709	\$306.88	5	5 1936	39.00%	0.635525898	Covariance	atistics				Heip			ID_303040	\$232.02		1040	45.00%	1 152001777	- <u>S</u> u	mmary statistics				
ID_435156	\$210.55	3	3 1941	48.00%	0.531547334	Exponential S	moothing							ID_273953	\$238.43		1940	20.00%	1.153801777	Co	<u>n</u> fidence Level f	or Mean:	95	%	
ID_895138	\$224.27	5	5 1942	2 36.00%	0.908265213	F-Test Two-S Fourier Analy	ample for Varia sis	nces						ID_916080	\$128.84		1942	23.00%	1.124606388	Ktł	Largest:		1		
ID_761090	\$206.43	3	3 1944	35.00%	0.255924656	Histogram				~				ID_849495	\$127.72]	1944	52.00%	0.6222001				1		
ID_669911	\$70.75	2	2 1942	2 38.00%	0.954653938		_						_	ID_306931	\$286.01	8	1941	75.00%	0.757862827	Ktr	i S <u>m</u> allest:		-		
ID_305840	\$232.02	3	5 1937	45.00%	0.453782275									ID_319060	\$72.78	2	1940	36.00%	0.668047298						
ID_275933	\$128.84	5	5 1942	23.00%	1.124606388									ID_656054	\$100.70	2	1941	47.00%	0.64977258						
ID 849495	\$127.72	1	L 1944	52.00%	0.6222001									ID_674144	\$174.06	2	1942	46.00%	0.441559588						
ID_306931	\$286.01	8	3 1941	75.00%	0.757862827									ID_186871	\$323.51	4	1942	41.00%	0.579273591						
ID_319060	\$72.78	2	2 1940	36.00%	0.668047298									ID_900197	\$372.45	5	1937	42.00%	0.376690398						
ID_656054	\$100.70	2	2 1941	47.00%	0.64977258									ID 243834	\$171.60	2	1940	48.00%	0.46628742						
ID_674144	\$174.06	2	2 1942	46.00%	0.441559588									_		I	1	1		1					
ID_186871	\$323.51	4	1 1942	41.00%	0.579273591																				
ID_900197	\$372.45	5	1937	42.00%	0.376690398																				
ID_243834	\$1/1.60	2	2 1940 7 1043	48.00%	0.46628/42																				
10_129149	\$282.90	-		42.00%	0.071270090																				

Outlier Detection Techniques/Statistical Tools Descriptive Statistics – Excel Output

Payment Per	Payment Per Bene		Services per Bene		Inv. Age of Benes		abetes	Inv Health Risk Score of Benes	
Mean	\$228.24	Mean	4.62	Mean	1942	Mean	37%	Mean	0.76
Standard Error	15.37	Standard Error	0.33	Standard Error	0.40	Standard Error	0.01	Standard Error	0.03
Median	\$196.69	Median	3.83	Median	1941	Median	36%	Median	0.76
Mode	#N/A	Mode	#N/A	Mode	1941	Mode	41%	Mode	#N/A
Standard Deviation	153.65	Standard Deviation	3.29	Standard Deviation	4.03	Standard Deviation	0.12	Standard Deviation	0.27
Sample Variance	23,608.47	Sample Variance	10.83	Sample Variance	16.26	Sample Variance	0.01	Sample Variance	0.07
Kurtosis	20.07	Kurtosis	6.87	Kurtosis	0.86	Kurtosis	0.53	Kurtosis	-1.00
Skewness	3.50	Skewness	2.28	Skewness	0.28	Skewness	0.65	Skewness	0.22
Range	\$1,245.86	Range	18.22	Range	23	Range	60%	Range	1.13
Minimum	\$10.49	Minimum	1.05	Minimum	1931	Minimum	15%	Minimum	0.26
Maximum	\$1,256.36	Maximum	19.27	Maximum	1954	Maximum	75%	Maximum	1.39
Sum	\$22,823.87	Sum	462.08	Sum	194186	Sum	36.93	Sum	75.57
Count	100.00	Count	100.00	Count	100	Count	100.00	Count	100.00

Outlier Detection Techniques/Statistical Tools Ranking and Percentile – Excel Tool and Output

Excel has a tool to Rank providers based on their sorted position in each variable

- Provider's ranking is generated within ulleteach indicator
- Total ranking is calculated by addition \bullet the total ranking – the lower the total ranking the more an outlier a provider ÍS

А	Ν	0	Р	Q	R	S	Ţ	U	V
						Inv Health Risk Score			Total
Provider ID	Point	% of Benes with Diabetes	Rank	Percent	Point	of Benes	Rank	Percent	Ranking
ID_573433	69	33%	59	39.30%	69	0.86	40	60.60%	110
ID_513905	83	44%	28	70.70%	83	<mark>0</mark> .79	46	54.50%	127
ID_543543	35	46%	20	76.70%	35	0.64	61	39.30%	129
ID_871960	97	57%	5	94.90%	97	0.40	93	7.00%	130
ID_306931	15	75%	1	100.00%	15	<mark>0.7</mark> 6	50	50.50%	132
ID_791822	92	35%	52	44.40%	92	<mark>0.76</mark>	48	52.50%	132
ID_124885	63	52%	9	89.80%	63	<mark>0.8</mark> 8	37	63.60%	136
ID_473715	23	71%	2	98.90%	23	0.76	49	51.50%	141
ID_365774	41	45%	25	73.70%	41	0.69	54	46.40%	146
ID_550162	30	51%	12	88.80%	30	0.43	89	11.10%	151
ID_737783	54	37%	45	53.50%	54	1.34	2	98.90%	151
ID_704678	76	57%	5	94.90%	76	0.81	45	55.50%	152
ID_158539	53	25%	82	14.10%	53	1.14	8	92.90%	158
ID_479429	60	29%	70	27.20%	60	1.11	11	89.80%	161
ID_129149	22	42%	32	67.60%	22	0.67	57	43.40%	168
ID_545940	66	31%	64	35.30%	66	0.90	36	64.60%	170
ID_101716	4	25%	82	14.10%	4	1.15	7	93.90%	175

Z – score

- ulletdeviations
 - for example, provider payment per beneficiary
- The raw data is re-scaled to have mean 0 and standard deviation 1
- A raw data value that is exactly equal to the mean corresponds to a Z-score value of 0 ullet
- The z-score re-scaling of data is commonly used to identify outliers ullet
- Z-score may be used as a ranking method using multiple indicators Composite Ranking Re-scaled data loses its original interpretation (change of units))
- ullet \bullet

$$z = \frac{x - \mu}{\sigma}$$

 $\mu = Mean$ $\sigma =$ Standard Deviation

Z - Score

A measure of how far a value is from the mean in terms of the number of standard

 $+4\sigma$ +4.0

27

- Computing Z- score one variable/Indicator
 - Payment per Bene
- Mean

В	C	D	E				
Payment							
Per Bene	Mean	St Dev	Z-s				
\$1,256.36	=AVERAGE(\$B\$2:\$B\$91)						

• St. Dev (Standard Deviation)

Α	В	С	D	E	
	Payment				
Provider ID	Per Bene	Mean	St Dev	Z-score R	۱N
ID_365774	\$1,256.36	\$246.78	=STDEVP	(\$B\$2:\$B\$91	L)

• Z – score

А	В	С	D	E	
	Payment				
Provider ID	Per Bene	Mean	St Dev	Z-score	RM
ID_365774	\$1,256.36	\$246.78	\$149.90	= <mark>((</mark> B2 -1 6is2i)/(a is privileged and proprietar

Z – Score – Excel Formulas and Output

	Α	B	С	D	E
		Payment			
	Provider ID	Per Bene	Mean	St Dev	Z-so
	ID_365774	\$1,256.36	\$246.78	\$149.90	6.735
	ID_998581	\$678.83	\$246.78	\$149.90	2.882
_	ID_871960	\$550.05	\$246.78	\$149.90	2.023
_	ID_573433	\$530.77	\$246.78	\$149.90	1.894
	ID_101716	\$528.02	\$246.78	\$149.90	1.876
	ID_871129	\$422.63	\$246.78	\$149.90	1.173
	ID_744767	\$421.01	\$246.78	\$149.90	1.162
	ID_550162	\$414.21	\$246.78	\$149.90	1.117
	ID_472611	\$406.85	\$246.78	\$149.90	1.067
	ID_900197	\$372.45	\$246.78	\$149.90	0.838
	ID_158539	\$348.24	\$246.78	\$149.90	0.676
	ID_121221	\$333.20	\$246.78	\$149.90	0.576
	ID_704678	\$326.39	\$246.78	\$149.90	0.531
	-	-	-	-	

Z - Score

Composite Ranking

- Includes multiple indicators in the ranking method ullet
- Z- score is calculated for each indicator \bullet
- Providers who are above 2 or 3 Standard deviation above the mean are consider outliers This is a simple way of ranking providers on multiple indicators
- \bullet ullet

Disadvantages

- Loses the original interpretation of the raw data ullet
- Gives equal weights to all indicators in composite ranking ullet

Z – Score (Composite Ranking) – Excel Output

	Α	AA	AB	AC	AD	AE	AF
		Step 5 What-	Step 5 What-If	Step 5 What-If	Step 5 What-If	Step 5 What-If	
		If Analysis:	Analysis:	Analysis:	Analysis: % of	Analysis: Inv. Avg.	
		Payment	Services per	Inv.Avg. Age of	Benes with	Health Risk Score	Total Z
1	Provider ID	Per Bene	Bene	Benes	Diabetes	of Benes	Score
2	ID_365774	1	1	0	0	0	2
3	ID_573433	0	0	1	0	0	1
4	ID_998581	0	1	0	0	0	1
5	ID_744767	0	1	0	0	0	1
6	ID_306931	0	0	0	1	0	1
7	ID_871960	0	0	0	0	0	0
8	ID_101716	0	0	0	0	0	0
9	ID_871129	0	0	0	0	0	0
L0	ID_473715	0	0	0	0	0	0
11	ID_513905	0	0	0	0	0	0
12	ID_550162	0	0	0	0	0	0

Z – Score (Composite Ranking) – Excel Steps

Step 5: What-If Analysis

=IF(X>=3,1,0)

Outlier Detection Techniques/Statistical Tools Z – Score (Composite Ranking) – Excel Output

		Payment						Total Z-
1	Provider ID	Per Bene	Step 1	Step 2	Step 3	Step 4	Step 5	Score
2	ID_365774	\$1,256.36	\$228.24	152.88	\$1,028.12	6.72	1	2
3	ID_573433	\$530.77	\$228.24	152.88	\$302.53	1.98	0	1
4	ID_998581	\$678.83	\$228.24	152.88	\$450.59	2.95	0	1
5	ID_744767	\$421.01	\$228.24	152.88	\$192.77	1.26	0	1
6	ID_306931	\$286.01	\$228.24	152.88	\$57.78	0.38	0	1
7	ID_871960	\$550.05	\$228.24	152.88	\$321.81	2.10	0	0
8	ID_101716	\$528.02	\$228.24	152.88	\$299.78	1.96	0	0
9	ID_871129	\$422.63	\$228.24	152.88	\$194.40	1.27	0	0
10	ID 473715	\$27 <u>9</u> 76	<u> </u>	157 88	<u> </u>	೧ २४	0	
		7	This document is privileged and proprietary. R	edistribution is not authorized	l without permission of IntegrityM.			M M

INTEGRITY Management Services

Box plot

- A good way to summarize large amounts of data
- A measure of spread, based on dividing a data set into quartiles
 - Q1 is the "middle" value in the *first* half of the rank-ordered data se
 - Q2 is the median value in the set.
 - Q3 is the "middle" value in the second half of the rank-ordered data-
- Right tail Outlier= 75th Percentile + 1.5*IQR (Inter-Quartile Range),
 - where IQR = (Q3 Q1)

	Payment	Services Inv. Age % of Benes Inv		Inv		Box Plot Servs Outlier? Yes	Box Plot Age Outlier? Yes =	
Provider ID	Per Bene	per Bene	of Benes	with Diabetes	Health	Box Plot Pmt Outlier? Yes = 1; No = 0	= 1; No = 0	1; No = 0
ID 573433	\$530.77	11	1954	33.00%	0.862515	=IF(B2 >= PERCENTILE.INC(B\$2:B\$101,0.75) + 1.5*(PERCENTILE.INC(B\$2:B\$	(101,0.75) - PERCENTILE.INC	B\$2:B\$101,0.25)), 1,0)

Box plot

Outlier Detection Techniques/Statistical Tools Boxplot - Excel

Α	B	С	D	E	F	G	Η	Ι	J	K	
		Service	Inv.	Benes	Inv Health	Box Plot	Box Plot	Box Plot	Box Plot	Box Plot Inv	Num
	Payment	s per	Age of	with	Risk Score	PMT	Servs	Age	Diab	Health	Outli
Provider ID	Per Bene	Bene	Benes	Diabetes	of Benes	Outlier?	Outlier?	Outlier?	Outlier?	Outlier?	(Max
ID_573433	\$530.77	11	1954	33%	0.86	1	1	1	0	0	
ID_365774	\$1,256.36	19	1940	45%	0.69	1	1	0	0	0	
ID_998581	\$678.83	19	1936	24%	1.05	1	1	0	0	0	
ID_871960	\$550.05	5	1953	57%	0.40	1	0	1	0	0	
ID_101716	\$528.02	13	1939	25%	1.15	1	1	0	0	0	
ID_744767	\$421.01	15	1939	23%	1.10	0	1	0	0	0	
ID_306931	\$286.01	8	1941	75%	0.76	0	0	0	1	0	
ID_482392	\$23.85	11	1942	24%	1.15	0	1	0	0	0	
ID_871129	\$422.63	7	1933	69%	0.44	0	0	0	0	0	
ID_550162	\$414.21	6	1945	51%	0.43	0	0	0	0	0	
			4004	050/	0.55	_			_		

Outlier Detection Techniques/Statistical Tools **Cluster Analysis**

Outlier Detection Techniques/Statistical Tools Cluster Analysis

Cluster analysis

- Systematically way of grouping providers using measure of similarity \bullet
- \bullet each cluster
- Diverse types of variables can be used to cluster the data \bullet
- lacksquare
 - Procedure codes \bullet
 - Place of service \bullet
 - Payment amount
- ullet

Summarize the descriptive statistics of the clusters, including the mean value (centroid) of

For example, in healthcare claims data some of the indicators that can be included are:

Understanding the data is essential because not all potential indicators will be informative in clustering the data properly, and using the most fitting indicators will reduce misclassification

Cluster Analysis – Excel Output

	Α	В	С	D	E	F	G	Н	Ι	J	K
		Payment	Avg. Age		Distance to	Distance to	Distance to	Payment	Avg. Age		Minimum
1	Provider ID	Per Bene	of Benes	Index	CENTROID 1	CENTROID 2	CENTROID 3	Per Bene	of Benes	CLASS	Distance
2	ID_365774	\$1,256.36	74	41	1,087.0448	955.6215	0.0029	\$1,256.36	74	Cluster3	0.002875384
3	ID_998581	\$678.83	78	88	509.5522	378.1216	577.5395	\$678.83	78	Cluster2	378.1216224
4	ID_871960	\$550.05	61	97	380.8877	249.6198	706.4262	\$550.05	61	Cluster2	249.6198434
5	ID_573433	\$530.77	60	69	361.6537	230.4279	725.7152	\$530.77	60	Cluster2	230.427897
6	ID_101716	\$528.02	75	4	358.7220	227.2924	728.3332	\$528.02	75	Cluster2	227.2923592
7	ID_871129	\$422.63	81	47	253.4883	122.1386	833.7477	\$422.63	81	Cluster2	122.138594
8	ID_744767	\$421.01	75	28	251.7130	120.2825	835.3481	\$421.01	75	Cluster2	120.282511
9	ID_550162	\$414.21	69	30	244.9179	113.5649	842.1536	\$414.21	69	Cluster2	113.5648968
10	ID_472611	\$406.85	83	51	237.7992	106.5500	849.5517	\$406.85	83	Cluster2	106.5500194
11	ID_900197	\$372.45	77	20	203.2012	71.8051	883.9102	\$372.45	77	Cluster2	71.8051201
12	ID_158539	\$348.24	73	53	178.9332	47.5096	908.1116	\$348.24	73	Cluster2	47.5095618

Outlier Detection Techniques/Statistical Tools Cluster Analysis – Excel Steps

L M		Ν	0	Q		
Cluster C	Center 1	Cluster (Center 2	Cluster Center 3		
Payment Per Bene	Avg. Age of Benes	Payment Per Bene	Avg. Age of Benes	Payment Per Bene	Avg. Age of Benes	
169.3123609	71.82497411	300.7337187	73.38276732	1256.35282	73.99812514	

- Distance to CENTROID 1 =SQRT((B2-\$L\$3)^2+(C2-\$M\$3)^2)
- CLASS = IF(MIN(E2:G2)=E2, "Cluster1", IF(MIN(E2:G2)=F2, "Cluster2", "Cluster3"))
- Minimum Distance = IF(J2="Cluster2",F2,IF(J2="Cluster3",G2,IF(J2="Cluster1",E2)))

Sum of Minimum Distance

raiameters			23	
Se <u>t</u> Objective:	\$K\$102		E	
To: <u>M</u> ax (Mi <u>n</u> 🔘 <u>V</u> alue Of:	0		
By Changing Variable Cells:				
\$L\$3:\$Q\$3			E	
Subject to the Constraints:				
		*	Add	
			Change	
			<u></u> nunge	
			Delete	
			<u>R</u> eset All	
		-	Load/Save	
Make Unconstrained Varia	bles Non-Negative	l		
S <u>e</u> lect a Solving Method:	GRG Nonlinear	•	Options	
Solving Method				
3		ooth poplinger Sala	ct the LB Simpley	
Select the GRG Nonlinear eng	line for Solver Problems that are sm	loour nonimear. Sele	ci ule Lr Simplex	

	А	В	С	D	E	F	G	Н	Ι	J	
		Payment	Avg. Age		Distance to	Distance to	Distance to	Payment	Avg. Age		Minim
1	Provider ID	Per Bene	of Benes	Index	CENTROID 1	CENTROID 2	CENTROID 3	Per Bene	of Benes	CLASS	Distan
2	ID_365774	\$1,256.36	74	41	1,087.0448	955.6215	0.0029	\$1,256.36	74	Cluster3	0.0
3	ID_998581	\$678.83	78	88	509.5522	378.1216	577.5395	\$678.83	78	Cluster2	378
4	ID_871960	\$550.05	61	97	380.8877	249.6198	706.4262	\$550.05	61	Cluster2	249
5	ID_573433	\$530.77	60	69	361.6537	230.4279	725.7152	\$530.77	60	Cluster2	230
6	ID_101716	\$528.02	75	4	358.7220	227.2924	728.3332	\$528.02	75	Cluster2	227
7	ID_871129	\$422.63	81	47	253.4883	122.1386	833.7477	\$422.63	81	Cluster2	122
8	ID_744767	\$421.01	75	28	251.7130	120.2825	835.3481	\$421.01	75	Cluster2	120
9	ID_550162	\$414.21	69	30	244.9179	113.5649	842.1536	\$414.21	69	Cluster2	113
10	ID_472611	\$406.85	83	51	237.7992	106.5500	849.5517	\$406.85	83	Cluster2	106
11	ID_900197	\$372.45	77	20	203.2012	71.8051	883.9102	\$372.45	77	Cluster2	71.
12	ID_158539	\$348.24	73	53	178.9332	47.5096	908.1116	\$348.24	73	Cluster2	47.

Outlier Detection Techniques/Statistical Tools Predictive Modeling

"The most that can be expected from any model is that it can supply a useful approximation to reality: All models are wrong; some models are useful." – George E.P. Box, British Statistician, 2005

What is Predictive Modeling?

- Predictive modeling is a process through which a future outcome or behavior is predicted based on \bullet the historical data at hand
 - The probability of a provider joining the exclusion list historical data is the exclusion list The probability of a provider joining a list of providers to be investigated – the historical data is the list
 - investigations
 - The probability of a provider (beneficiary) staying with medical group or health plan the historical data is the list of providers who left

Why Predictive Modeling?

- Preventing future fraud– cost saving to the programs Investigating providers before they can do more damage or commit more fraud Proactively initiating programs to retain providers or beneficiaries within the medical group or
- ulletullet
- health plan

Outcome of Predictive Modeling?

- The goal is to determine the likelihood of the outcome the higher the probability the more likely the outcome will occur
 - To be excluded from the programs
 - To be included in the investigation list
 - To stay with the medical group or health plan

Predictive Modeling – Overview

Predictive Modeling – Building Blocks

Terms commonly used in Predictive Modeling

- Logistic Regression a predictive model used when the outcome is "Yes" or "No"
- **Training Dataset** dataset that includes both historical and current data with clear ulletdistinction of the outcomes – coded 1 for "Yes" and 0 for "No"
- Weights (Coefficients) numbers that express the importance of variables
- **P-values** numbers that express the strength of association between the outcome and variables
- \bullet observed data
- computed

Excel Tools

- Data Analysis Regression add-in tool available in Excel
- **Excel Solver** add-in tool available in Excel \bullet

• Odds Ratio (OR) – another way of expressing probability; 75% probability is equal to OR of 3 **Log-Likelihood Algorithm** – algorithm that maximizes the likelihood of obtaining the

• Scoring Dataset – new data on individuals/entities whose probabilities of outcomes will be

INTEGRITY

Predictive Modeling – Workflow

Download PUF and LEIE data, run descriptive statistics, Identify variables and create the analytical

Step 2

Assign random probability numbers to the providers according to their original classification ("1" or "0") and compute odds ratio

Step 3

Compute Odds Ratio and run Regression of Odds Ratio on the 5 variables of the analytical file

Step 4

Insert the estimated regression weights (coefficients) into the "Coefficients" Table"

Compute the Log-likelihood using the values in the "Coefficients Table"

Predictive Modeling – Workflow

Run Excel Solver using as objective function the sum of the Log-likelihood. The Solver will find the weights (coefficients) that maximize the Log-likelihood – the likelihood of obtaining the observed data

Step 7

Create the model covariance matrix to test the significance of the logistic regression estimated weights

Step 8

Create a dataset of active non-excluded (PUF) providers including the relevant indicators to score their probability of being excluded using the weights generated by the logistic regression

Step 9

Score probabilities of non-excluded providers

Review results and conduct additional analysis

Predictive Modeling – Excel Output

Provider ID	Payment Per Bene	Services Per Bene	Avg. Age of Benes	% of Benes with Diabetes	Avg. Health Risk Score of Benes		e to the nower of l	Probability (Px)
		Bene	Denes			_		
ID_365774	\$1,256.36	5 19	74	45.00%	1.4592	19.80	396,550,446.39	100.00%
ID_573433	\$530.77	, 11	60	33.00%	1.1594	6.34	567.97	99.82%
ID_473715	\$279.76	4	68	71.00%	1.3161	4.76	116.35	99.15%
ID_737783	\$278.92	. 5	73	37.00%	0.7488	3.44	31.22	96.90%
ID_101716	\$528.02	13	75	25.00%	0.8668	2.70	14.83	93.68%
ID_871960	\$550.05	5	61	57.00%	2.5261	2.40	11.03	91.69%
ID_998581	\$678.83	19	78	24.00%	0.948	0.89	2.44	70.96%
ID_158539	\$348.24	. 8	73	25.00%	0.8751	0.51	1.67	62.56%
ID_306931	\$286.01	. 8	73	75.00%	1.3195	0.48	1.62	61.85%
ID_124885	\$217.29	5	69	52.00%	1.1407	0.40	1.50	59.93%
ID_638763	\$296.67	5	75	26.00%	1.0391	0.39	1.47	59.52%

100 random providers were selected to estimate their probabilities of exclusion The top 10 providers have at least 59% of exclusion probability

Step 1: Training dataset

- The training dataset included •
 - 18 GP physicians excluded from the Medicare program and
 - A sample of 72 physicians active in the program (non-excluded)
 - 5 variables \bullet
 - Payment Per Beneficiary Ο
 - Number of Services Per Beneficiary Ο
 - Average Age of Beneficiaries 0
 - Percentage of Beneficiaries with Diabetes Ο
 - The average CMS-computed beneficiary health risk score Ο
- lacksquarevariables in predicting the outcome of being excluded

Predictive Modeling – Executing the Steps

The objective of using a training dataset is to assess the importance (weights) of the 5

Predictive Modeling – Step 1: Training Dataset

				Step 1		
Provider ID	EXCLUDED	Payment Per Bene	Services Per Bene	Avg. Age of Benes	% of Bene with Diabetes	Avg. Health Risk Score of Be
ID_331177	1	\$627.41	. 14.9	75	40.00%	0
ID_607721	1	\$576.74	13.43	73	35.00%	1
ID_728367	1	\$836.23	10.3	71	37.00%	1
ID_376426	1	\$287.10	8.52	74	75.00%	1
ID_136308	1	\$558.54	8.5	73	47.00%	1
ID_229648	C	\$1,767.16	67.83	73	20.00%	1
ID_277298	C	\$447.73	15.93	71	38.00%	1
ID_192713	C	\$262.48	8 10.48	74	19.00%	
ID_572197	C	\$219.62	9.48	70	34.00%	
ID_374411	C	\$446.12	7.93	73	50.00%	1

Steps 2-6: Intermediary steps

- Step 2: Probabilities between 50-99% were assigned to excluded providers; and probabilities between 1-49% were assigned to non-excluded providers
- **Step 3:** The Odds Ratios were computed for each of the providers
- **Step 4:** Regression weights (coefficients) were estimated
- Step 5: Using the initial weights computed in Step 4, the Log-Likelihood was generated for each of the providers
- Step 6: The Excel Solver was run using the sum of the Log-likelihood and the initial weights to generate the final weights for each of the variables

Step 7: P-Value

- The P-value of each variable was computed to assess the strength of the association between the variable and the outcome
- The lower the p-value the stronger the association between variables • Standard rule is to consider p-values <= 5% as indicative of statistically significant association

Predictive Modeling - Executing the Steps

Solver Options

Max Time Unlimited, Iterations Unlimited, Precision 0.000001 Convergence 0.0001, Population Size 100, Random Seed 0, Derivatives Central Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%

Objective Cell (Max)

Cell	Name	Origir
\$U\$ Log(M	laximum Likelihood)	-37.0

Variable Cells

Cell Name		Original Value	Final Value	Integer
\$U\$ Intercept		2.5150	17.7796	Contin
\$U\$ Payment Per Bene		0.0048	0.0359	Contin
\$U\$ Services Per Bene		-0.1142	-0.9372	Contin
\$U\$ Avg. Age of Benes		-0.0498	-0.2324	Contin
\$U\$ % of Bene with Diab	etes	2.6324	11.1129	Contin
\$U\$ Avg. Health Risk Sco	re of Benes	-0.8780	-8.8086	Contin

Predictive Modeling - Step 6: Final Weights

nal Value Final Value 0302969 -17.56488668

- P-value is calculated by: \bullet
 - The value of Wald = (Coef/STD DEV)²
 - ulletfunction
 - The p-value of all the variable are less than 0.05 ullet

122		Coef	VAR	STD DEV	Wald	p-value
123	Intercept	17.7796	59.3103	=SQRT(C12	0.0210	
124	Payment Per Bene	0.0359	0.0002	0.0126	8.1835	0.0042
125	Services Per Bene	-0.9372	0.1892	0.4350	4.6418	0.0312
126	Avg. Age of Benes	-0.2324	0.0110	0.1050	4.9017	0.0268
127	% of Bene with Diabetes	11.1129	17.6422	4.2003	7.0001	0.0082
128	Avg. Health Risk Score of Benes	- <mark>8.808</mark> 6	8.1025	2.8465	9.5763	0.0020

Predictive Modeling – Step 7: P- values

The value of P-value =CHISQ.DIST.RT(Wald,1), where CHISQ.DIST.RT is an Excel statistical

New data of 100 non-excluded providers are scored using the weights

Providor ID	Payment Por Bono	Services Per	Inv. Age of	% of Benes with	Inv Health Risk		o to the new or of l	Probability (Py)
Provider ID	Per bene	Dene	Derres	Diabetes	Score of Defies	_	e to the power of L	Probability (PX)
ID_365774	\$1,256.36	19	74	45.00%	1.4592	19.80	396,550,446.39	100.00%
ID_573433	\$530.77	, 11	60	33.00%	1.1594	6.34	567.97	99.82%
ID_473715	\$279.76	4	68	71.00%	1.3161	4.76	116.35	99.15%
ID_737783	\$278.92	. 5	73	37.00%	0.7488	3.44	31.22	96.90%
ID_101716	\$528.02	. 13	75	25.00%	0.8668	2.70	14.83	93.68%
ID_871960	\$550.05	5	61	57.00%	2.5261	2.40	11.03	91.69%
ID_998581	\$678.83	19	78	24.00%	0.948	0.89	2.44	70.96%
ID_158539	\$348.24	. 8	73	25.00%	0.8751	0.51	1.67	62.56%
ID_306931	\$286.01	. 8	73	75.00%	1.3195	0.48	1.62	61.85%
ID_124885	\$217.29	5	69	52.00%	1.1407	0.40	1.50	59.93%
 ID_638763	\$296.67	5	75	26.00%	1.0391	0.39	1.47	59.52%

- Predictive Modeling Step 8: Scoring

Outlier Detection Techniques/Statistical Tools Results From The Outlier Detection Techniques

Eight out of the 10 providers were also in the top 10 in more than one statistical tool						
	ID_36					
 One provider was in the top 10 in all the statistical tools 	ID_57					
 Four providers were in the top 10 in 	ID_47					
5 of the statistical tools	ID_73					
 Two providers were in the top 10 in 4 of the statistical tools 	ID_10					
 One provider was an outlier in 2 	ID_87					
statistical tool	ID_99					
Two providers were in the top 10 in	ID_15					
the predictive modeling only	ID_30					
	ID_12					

ider ID	Excel Ranking	Z – Score	Composite Ranking (Z- score)	Box-Plot	Cluster Analysis	Predictive Modeling	Number of Hits by Detection Tools
65774	9	1	1	2	C3	100.00%	
73433	1	4	2	1		99.82%	
73715	8		9		C2	99.15%	
37783						96.90%	
01716		5	7	5	C2	93.68%	
71960	4	3	6	4		91.69%	
98581		2	3	3		70.96%	
58539						62.56%	
06931	5		5	7	C2	61.85%	
24885	7					59.52%	

Sampling and Extrapolation

Statistical Sampling Methods

Why sampling?

- Limited amount of available audit resources makes unfeasible reviewing 100 percent of the items of a population
- Statistically valid random samples allow for the extrapolation of the sample audit results to the whole population
- Typical goals of sampling in health care programs include:
 - record results as yes or no)
 - determination of the possible existence of claim overpayments (auditors record results in dollars amount) ullet

Sampling requirements

- The goal of the statistical requirements is to make sure that the sample is representative of the larger group
- regulatory guidance.
- Proper documentation of the whole process is essential to make it fully replicable \bullet

Main types of audit-oriented sampling

- the number of population items in error
- of the errors made

Checking if enrollment application procedures or eligibility status processes are complying with regulatory requirements (auditors

The methodology does not need to be optimal as long as it is statistically valid - having a scientific basis with reference to

The existence of multiple valid sample plans allows the auditor to choose the designs that less demanding in audit resources

Attribute sampling – the goal is to find the *proportion of items* in the sample that meet a specified set of criteria and then estimate

Variable sampling – the goal is to determine the *dollar amount of billing errors* in the sample and then estimate the total dollar value

INTEGRITY MANAGEMENT SERVICES

Statistical Sampling Methods

Types of sample design frequently used in auditing

- Simple random sampling involves the random selection of data from the entire population so that ulleteach possible sample is equally likely to occur
- Stratified random sampling divides the population into smaller groups (strata) of similar \bullet characteristics and selects random sample from within each group
- If the technical statistical parameters are the same then the stratified random sampling approach ulletsaves audit resources as it requires smaller sample sizes than the simple random sampling method

Extrapolation

- Type of extrapolation
 - Error rate \bullet
 - Overpayment amounts ullet
- The results of the sample review (audit) may or may not justify extrapolation ullet
- The presence of "sustained or high level of payment error" in billing transactions justifies lacksquareperforming sampling to estimate the total dollar amount of billing errors (language taken from the Program Integrity Manual of CMS, Section 8.4.1.2)
 - Extrapolation is not justified if the error rate is low in this case the recoupment is limited to the overpayment found in the sample

NTEGRITY

Statistical Sampling Methods

Software requirements to perform sampling

- ulletreplicable
- Availability of key statistical distributions ullet

Software packages/platforms to implement sampling

Microsoft EXCEL

formulas that compute sample size and allocation of overall sample size across strata

RAT-STATS (OIG) \bullet

- Includes diverse sampling and extrapolation options by means of dropdown windows ۲
- Requires stratum boundary information to be fed into the system
- SAS, SPSS, R and other statistical packages lacksquare

 - Can incorporate program code to identify stratum boundaries
- GLŶD(Σ)™
 - Allows for the implementation of sampling or extrapolation processes without the need of coding
 - Includes the identification of stratum boundaries without the need of coding

Random number generator with the option of retaining seed numbers to make the process

Includes available functions to retrieve information from embedded statistical distribution tables to be included in

Allow for programming of procedures necessary to implement sampling and extrapolation procedures

Reference

- Dreiseitl, S. and L. Ohno-Machado, "Logistic Regression and Artificial Neural Network ullethttp://www.sciencedirect.com/science/article/pii/S1532046403000340
- ulletInference, and Prediction, Springer, 2009
- \bullet 163, Spring. Copy at <u>http://j.mp/IBZoli</u>
- \bullet Prediction, ed. By M. Alvarez, Cambridge University Press, 2016: <u>http://gking.harvard.edu/files/gking/files/prefaceorbigdataisnotaboutthedata_1.pdf</u>
- ulletLarsen):
- ulletJournal of Health Care Compliance, Volume 14, Number 1, January-February 2012
- ulletstatistics.com/logistic-regression/significance-testing-logistic-regression-coefficients/
- Journal of Computer Applications (0975 – 8887) Volume 11– No.7, December 2010

Classification: A Methodological Review", Journal of Biomedical Informatics 35, 2002, 352:359 :

Hastie, T., R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining,

King, G. and L. Zeng, "Logistic Regression in Rare Events Data." Political Analysis, 9, 2001, 137–

King, G., "Big Data Is Not About The Data!" In Computational Social Science: Discovery and

Larsen, R., "Notes on Matrix Operations in Excel" (excerpt from Engineering with Excel by Ronald

http://www.eng.auburn.edu/~clemept/CEANALYSIS_SPRING2011/matrixoperations_notes.pdf

Macedo, P. and C. Dorfschmid Statistics: "Friend or Foe? The Compliance Officer's Perspective",

Zaointz, C., "Significance Testing of the Logistic Regression Coefficients" : <u>http://www.real-</u>

H. Aravind, C. Rajgopal and K.P. Soman, "A Simple Approach to Clustering in Excel", International

Thank you!

info@integritym.com

This document is privileged and proprietary. Redistribution is not authorized without permission of IntegrityM.

For inquiries, please contact us at:

703-683.9600

